Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.

Identifieur interne : 000136 ( Main/Exploration ); précédent : 000135; suivant : 000137

Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.

Auteurs : Wei Huang [République populaire de Chine] ; Ying-Jie Yang [République populaire de Chine] ; Ji-Hua Wang [République populaire de Chine] ; Hong Hu [République populaire de Chine]

Source :

RBID : pubmed:31623777

Descripteurs français

English descriptors

Abstract

Owing to the high leaf mass per area, alpine evergreen sclerophyllous Rhododendron have low values of mesophyll conductance (gm). The resulting low chloroplast CO2 concentration aggravates photorespiration, which requires a higher ATP/NADPH ratio. However, the significance of photorespiration and underlying mechanisms of energy balance in these species are little known. In this study, eight alpine evergreen sclerophyllous Rhododendron species grown in a common garden were tested for their gm, electron flow to photorespiration, and energy balancing. Under saturating light, gm was the most limiting factor for net photosynthesis (AN) in all species, and the species differences in AN were primarily driven by gm rather than stomatal conductance. The total electron flow through photosystem II (ETRII) nearly equaled the electron transport required for Rubisco carboxylation and oxygenation. Furthermore, blocking electron flow to photosystem I with appropriate inhibitors showed that electron flow to plastic terminal oxidase was not observed. As a result, these studied species showed little alternative electron flow mediated by water-water cycle or plastic terminal oxidase. By comparison, the ratio of electron transport consumed by photorespiration to ETRII (JPR/ETRII), ranging from 43%∼55%, was negatively correlated to AN and gm. Furthermore, the increased ATP production required by enhanced photorespiration was regulated by cyclic electron flow around photosystem I. These results indicate that photorespiration is the major electron sink for dissipation of excess excitation energy in the alpine evergreen sclerophyllous Rhododendron species. The coordination of gm, photorespiration and cyclic electron flow is important for sustaining leaf photosynthesis.

DOI: 10.1016/j.plantsci.2019.110275
PubMed: 31623777


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.</title>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ying Jie" sort="Yang, Ying Jie" uniqKey="Yang Y" first="Ying-Jie" last="Yang">Ying-Jie Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ji Hua" sort="Wang, Ji Hua" uniqKey="Wang J" first="Ji-Hua" last="Wang">Ji-Hua Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, PR China. Electronic address: wjh0505@gmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Hong" sort="Hu, Hong" uniqKey="Hu H" first="Hong" last="Hu">Hong Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China. Electronic address: huhong@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31623777</idno>
<idno type="pmid">31623777</idno>
<idno type="doi">10.1016/j.plantsci.2019.110275</idno>
<idno type="wicri:Area/Main/Corpus">000098</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000098</idno>
<idno type="wicri:Area/Main/Curation">000098</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000098</idno>
<idno type="wicri:Area/Main/Exploration">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.</title>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Ying Jie" sort="Yang, Ying Jie" uniqKey="Yang Y" first="Ying-Jie" last="Yang">Ying-Jie Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ji Hua" sort="Wang, Ji Hua" uniqKey="Wang J" first="Ji-Hua" last="Wang">Ji-Hua Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, PR China. Electronic address: wjh0505@gmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Hong" sort="Hu, Hong" uniqKey="Hu H" first="Hong" last="Hu">Hong Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China. Electronic address: huhong@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant science : an international journal of experimental plant biology</title>
<idno type="eISSN">1873-2259</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>Electron Transport (radiation effects)</term>
<term>Light (MeSH)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Rhododendron (physiology)</term>
<term>Rhododendron (radiation effects)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Altitude (MeSH)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Rhododendron (effets des radiations)</term>
<term>Rhododendron (physiologie)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Transport d'électrons (effets des radiations)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Photosystem II Protein Complex</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Photosynthèse</term>
<term>Rhododendron</term>
<term>Transport d'électrons</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe protéique du photosystème II</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Electron Transport</term>
<term>Photosynthesis</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Light</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altitude</term>
<term>Lumière</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Owing to the high leaf mass per area, alpine evergreen sclerophyllous Rhododendron have low values of mesophyll conductance (g
<sub>m</sub>
). The resulting low chloroplast CO
<sub>2</sub>
concentration aggravates photorespiration, which requires a higher ATP/NADPH ratio. However, the significance of photorespiration and underlying mechanisms of energy balance in these species are little known. In this study, eight alpine evergreen sclerophyllous Rhododendron species grown in a common garden were tested for their g
<sub>m</sub>
, electron flow to photorespiration, and energy balancing. Under saturating light, g
<sub>m</sub>
was the most limiting factor for net photosynthesis (A
<sub>N</sub>
) in all species, and the species differences in A
<sub>N</sub>
were primarily driven by g
<sub>m</sub>
rather than stomatal conductance. The total electron flow through photosystem II (ETRII) nearly equaled the electron transport required for Rubisco carboxylation and oxygenation. Furthermore, blocking electron flow to photosystem I with appropriate inhibitors showed that electron flow to plastic terminal oxidase was not observed. As a result, these studied species showed little alternative electron flow mediated by water-water cycle or plastic terminal oxidase. By comparison, the ratio of electron transport consumed by photorespiration to ETRII (J
<sub>PR</sub>
/ETRII), ranging from 43%∼55%, was negatively correlated to A
<sub>N</sub>
and g
<sub>m</sub>
. Furthermore, the increased ATP production required by enhanced photorespiration was regulated by cyclic electron flow around photosystem I. These results indicate that photorespiration is the major electron sink for dissipation of excess excitation energy in the alpine evergreen sclerophyllous Rhododendron species. The coordination of g
<sub>m</sub>
, photorespiration and cyclic electron flow is important for sustaining leaf photosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31623777</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2259</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant science : an international journal of experimental plant biology</Title>
<ISOAbbreviation>Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.</ArticleTitle>
<Pagination>
<MedlinePgn>110275</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0168-9452(19)30803-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.plantsci.2019.110275</ELocationID>
<Abstract>
<AbstractText>Owing to the high leaf mass per area, alpine evergreen sclerophyllous Rhododendron have low values of mesophyll conductance (g
<sub>m</sub>
). The resulting low chloroplast CO
<sub>2</sub>
concentration aggravates photorespiration, which requires a higher ATP/NADPH ratio. However, the significance of photorespiration and underlying mechanisms of energy balance in these species are little known. In this study, eight alpine evergreen sclerophyllous Rhododendron species grown in a common garden were tested for their g
<sub>m</sub>
, electron flow to photorespiration, and energy balancing. Under saturating light, g
<sub>m</sub>
was the most limiting factor for net photosynthesis (A
<sub>N</sub>
) in all species, and the species differences in A
<sub>N</sub>
were primarily driven by g
<sub>m</sub>
rather than stomatal conductance. The total electron flow through photosystem II (ETRII) nearly equaled the electron transport required for Rubisco carboxylation and oxygenation. Furthermore, blocking electron flow to photosystem I with appropriate inhibitors showed that electron flow to plastic terminal oxidase was not observed. As a result, these studied species showed little alternative electron flow mediated by water-water cycle or plastic terminal oxidase. By comparison, the ratio of electron transport consumed by photorespiration to ETRII (J
<sub>PR</sub>
/ETRII), ranging from 43%∼55%, was negatively correlated to A
<sub>N</sub>
and g
<sub>m</sub>
. Furthermore, the increased ATP production required by enhanced photorespiration was regulated by cyclic electron flow around photosystem I. These results indicate that photorespiration is the major electron sink for dissipation of excess excitation energy in the alpine evergreen sclerophyllous Rhododendron species. The coordination of g
<sub>m</sub>
, photorespiration and cyclic electron flow is important for sustaining leaf photosynthesis.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ying-Jie</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ji-Hua</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, PR China. Electronic address: wjh0505@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China. Electronic address: huhong@mail.kib.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Ireland</Country>
<MedlineTA>Plant Sci</MedlineTA>
<NlmUniqueID>9882015</NlmUniqueID>
<ISSNLinking>0168-9452</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="N">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029793" MajorTopicYN="N">Rhododendron</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alpine sclerophyllous species</Keyword>
<Keyword MajorTopicYN="N">Mesophyll conductance</Keyword>
<Keyword MajorTopicYN="N">Photoprotection</Keyword>
<Keyword MajorTopicYN="N">Photorespiration</Keyword>
<Keyword MajorTopicYN="N">Photosynthesis</Keyword>
<Keyword MajorTopicYN="N">Rhododendron</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31623777</ArticleId>
<ArticleId IdType="pii">S0168-9452(19)30803-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.plantsci.2019.110275</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
</noRegion>
<name sortKey="Hu, Hong" sort="Hu, Hong" uniqKey="Hu H" first="Hong" last="Hu">Hong Hu</name>
<name sortKey="Wang, Ji Hua" sort="Wang, Ji Hua" uniqKey="Wang J" first="Ji-Hua" last="Wang">Ji-Hua Wang</name>
<name sortKey="Yang, Ying Jie" sort="Yang, Ying Jie" uniqKey="Yang Y" first="Ying-Jie" last="Yang">Ying-Jie Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000136 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000136 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31623777
   |texte=   Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31623777" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020